

RF transmission protocol

of

Auriol H13726 Ventus WS155, Hama EWS 1500, Meteoscan W155/W160

wireless weather stations

v2.0

by TFD www.tfd.hu tfd@tfd.hu

2011. January 25.

1 RF transmission

1.1 Modulation and bit timing

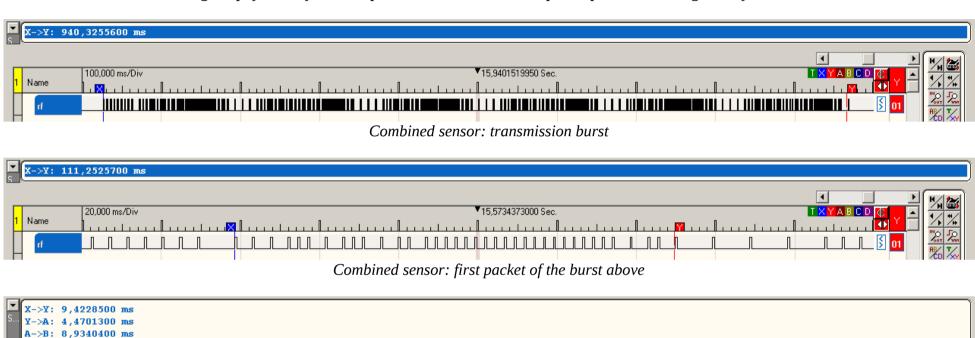
The data from the sensors is transmitted on 433.92 MHz with OOK (on/off keying) modulation. The bits are coded by the duration of the off keying intervals between the \sim 0.5 msec on keying pulses as follows:

```
    - sync bit ~9 msec,
    - 1 data bit ~4 msec,
    - 0 data bit ~2 msec.
```

Note, that timings are approximates, they depend on the receiver characteristic.

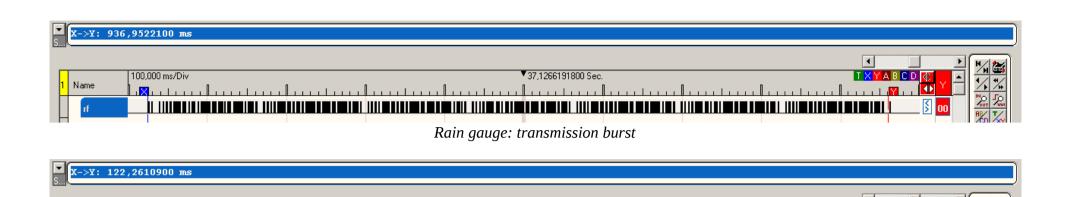
1.2 Transmission bursts

The transmissions take place in bursts. One burst consist of some **sync** bit separated data packets, that contain 36 data bits each. These bursts are then repeated in specified time intervals. The two sensors have a slightly different burst format, more on that later.


1.3 Samples

B->C: 2,4845400 ms C->D: 566,9200 us

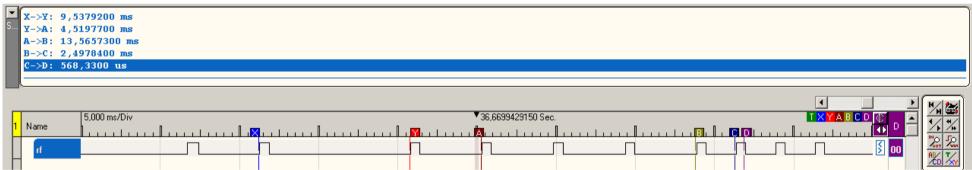
Name


5,000 ms/Div

For better understanding the physical layer of the protocol here are some samples captured with a logic analyzer:

Combined sensor: bit timing

▼15,5146957100 Sec.



Rain gauge: first packet of the burst above

20,000 ms/Div

Name

▼36,7280620800 Sec.

Rain gauge: bit timing

1.4 General packet format

Each data packet contains 36 bits, that form 9 4 bit (LSB first) nibbles namely n_0 to n_8 . The first two and the last nibbles have the same meaning for each type of packets, the others carry the sensor specific payload data.

	n	0			n	\mathbf{l}_1			n	1 2			n	1 3			n	l4			r	1 5			n	.6			n	17			n	18	
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35
r_0	\mathbf{r}_1	\mathbf{r}_2	r_3	r_4	\mathbf{r}_{5}	r_6	r ₇																									C ₀	C ₁	C ₂	C ₃
·		r	ando	om i	d			v											рс	ıyloc	ıd											(check	ksum	1

- random id

At power up (when the batteries are inserted) the sensor selects a random number, that will use as a (hopefully) unique identifier to avoid interference with similar sensors in the base unit's receiving range. After collecting a lot of random ids it seems, that r_4 is always 0, the others are truly randoms.

- v

0: Sensor's battery voltage is normal.

1: Battery voltage is below ~2.6 V.

- checksum

This field is used to validate the data integrity of a packet. The two sensors use different formulas to compute this field, see the details there.

2 Combined sensor

2.1 Transmission schedule

The combined sensor sends all of it's data in the following burst format:

- 8 **1** bits preamble to prepare the receiver circuitry,
- 1 **sync** bit,
- 36 bits data packets repeated 6 times, 4 **sync** bits between each packet,
- 1 **sync** bit.

Typical transmitting period is 31 seconds.

2.2 Temperature and relative humidity data

This packet is repeated six times within a transmission burst. Only one of six consecutive transmission bursts contains this type of data.

	n	0			r	\mathbf{l}_1			r	1 2			n	l 3			n	4			n	1 5			n	-6			n	1 7			n	l8	
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35
r_0	\mathbf{r}_1	r ₂	r ₃	r ₄	r_5	r ₆	r ₇		\mathbf{X}_0	\mathbf{x}_1		t ₀	t_1	t ₂	t ₃	t ₄	t ₅	t ₆	t ₇	t ₈	t 9	t ₁₀	t ₁₁	h _{o0}	h _{o1}	h _{o2}	h _{o3}	h _{t0}	h _{t1}	h _{t2}	h _{t3}	C ₀	C ₁	C ₂	C 3
		r	and	om id v X bt.							bt.				tei	прег	atur	e [0	.1 °C	C]					rh o	nes			rh t	ens		C	checl	ksun	1

- *temperature* This 12 bits wide 2's complement signed binary number represents the actual temperature value in 0.1 °C units.

- *rh* ones, *rh* tens Two BCD digits, that shows the actual relative humidity in %.

- bt.

0: Scheduled transmission.

1: The transmission was initiated by pressing the button inside the sensor unit.

- X

X ₁	X_0	
0	0	
0	1	Valid temperature/humidity data was seen with all of these three values. Their meaning is unknown.
1	0	Then incuming is unknown.
1	1	Non temperature/humidity data. All other type data packets have this value in this field.

- checksum

The formula is used in all types of packets sent by the combined sensor:

$$n_8 = (0xf - n_0 - n_1 - n_2 - n_3 - n_4 - n_5 - n_6 - n_7) & 0xf$$

2.3 Wind speed and direction data

These two packets are sent in pairs repeated three times within a transmission burst. Five of six consecutive transmission bursts contain this type of data.

	I	1_0			r	1_1			n	1 2			n	l 3			n	l4			r	1 5			n	6			n	1 7			n	18	
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35
r_0	r ₁	\mathbf{r}_2	r ₃	r ₄	r ₅	r ₆	r ₇		X ₀	\mathbf{X}_1														S ₀	S ₁	S ₂	S ₃	S ₄	S 5	S 6	S 7	C ₀	C ₁	C ₂	C 3
		r	random id						1	1	bt.	1	0	0	0	0	0	0	0	0	0	0	0	av	erag	e wi	nd s	реес	1 [0.	2 m/	′s]	C	check	ksum	1

		n_0				r	\mathbf{l}_1			n	1 2			Γ	l 3			n	14			r	1 5			n	6			n	17			Г	1_8	
0	1	L	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35
r	r	1	\mathbf{r}_2	r_3	r_4	r_5	r ₆	r ₇		\mathbf{x}_0	\mathbf{X}_1					d_0	\mathbf{d}_1	\mathbf{d}_2	\mathbf{d}_3	d_4	\mathbf{d}_{5}	\mathbf{d}_{6}	\mathbf{d}_7	d_8	\mathbf{g}_0	g_1	g_2	g ₃	g_4	g ₅	g_6	g ₇	C ₀	C ₁	C ₂	C ₃
			r	ando	om id v 1 1 bt.								1	1	1			wii	nd d	irect	ion	[°]				W	ind	gust	[0.2	? m/s]		(chec	ksun	1

- average wind speed, wind gust

Both fields are a 8 bits wide unsigned binary numbers, that describe the corresponding wind speed values in 0.2 m/s units.

- wind direction

This 9 bits wide unsigned binary number shows the wind direction in degrees.

Only these values were seen:

0 (N), 45 (NE), 90 (E), 135 (SE), 180 (S), 225 (SW), 270 (W), 315 (NW).

Other values - that are sometimes shown on the base unit's LCD screen - seems to be interpolated animations only.

- bt.

0: scheduled transmission.

1: the transmission was initiated by pressing the button inside the sensor unit.

3 Rain gauge

3.1 Transmission schedule

The rain gauge's burst format:

- 1 **1** bit preamble to prepare the receiver circuitry,
- 1 **sync** bit,
- 36 bits data packets repeated 7 times, 1 **sync** bit between each packet,
- 1 **sync** bit.

Typical transmitting period is 2 minutes 28 seconds, that may be shorter if there is a change in the measured value.

3.2 Rain data

Each 7 packet in a burst contain the same data.

		n	.0			I	\mathbf{l}_1			n	1 2			n	l ₃			n	.4			n	1 5			n	l6			n	l ₇			n	18	
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35
1	0	r_1	\mathbf{r}_2	\mathbf{r}_3	r ₄	r ₅	r ₆	r ₇		\mathbf{x}_0	\mathbf{X}_1						r_0	\mathbf{r}_1	\mathbf{r}_2	r ₃	r ₄	r_5	r_6	r ₇	r ₈	r ₉	r ₁₀	r ₁₁	r ₁₂	r_{13}	r ₁₄	r ₁₅	C ₀	C ₁	C ₂	C 3
	random id v 1 1 0 1 1 0 0 rain [0.25 mm]													(checi	ksum	1																			

- *rain* This 16 bits wide unsigned binary number represents the accumulated (since power on) rain data in 0.25 mm units. Usually each tipping of a bucket means 0.5 mm, that causes this number incremented by 2, but in some cases the least significant bit is also used.
- checksum Computed with the following formula: $n_8 = (0x7 + n_0 + n_1 + n_2 + n_3 + n_4 + n_5 + n_6 + n_7) & 0xf$

4 Revision history

v	2.0	2011-01-25	 In the modulation and bit timing section the inverted keying polarity was corrected, and some logic analyzer captured samples of RF transmissions were added. Battery voltage bit found. Negative temperature value representation specified. Rain gauge data details were added, the above required also some rearrangements.
v	1.0	2011-01-18	Initial release.